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Abstract. The method of concatenation (the addition of precomputed shorter chains to
the ends of a centrally generated longer chain} has permitted the extension of the exact
series for Cy—the number of distinct configurations for self-avoiding walks of length N.
We report on the leading exponent ¥ and x_ (the reciprocal of the connectivity constant}
for the 20 Honeycomb lattice (42 terms) 1.3437, 0.541 1968; the 2D square lattice (30 terms)
1.3436, 0.379 0520, the 3D simple cubic lattice (23 terms) 1.161932, 0.213 4987, the 4D
hypercubic (18 terms) vy =1, 0.147 60 and the sp hypercubic lattice (13 terms) y = 1.025,
0.113 05. In addition we have also evaluated the leading correction terms: honeycomb
A=1, square A= 0.85, simple cubic A=1.0 and the 4D hypercubic logarithmic correction
with 6=0.25.

1. Introduction

The random walker and its vibrant offspring, the self-avoiding waiker, are topics that
have received continued attention since the earliest definition of the problem at the
turn of the century {Barber and Ninham 1970, Montroll and Schlesinger 1984). The
saw (i.e. the subset of random walks that accidentally avoids self-intersection) has
been used to model physical systems from the microscopic scale (polymers, etc) to the
macroscopic (clustering of proto-galaxies in the early universe). The saw can also be
defined by the n-vector model in the limit of n >0 (deGennes 1979}, and this may be
considered as one of the simplest contenders for testing the predictions of the renor-
malization group theory. The saw is also the simplest non-trivial graph determined by
exact enumeration which is used in series analysis (see, for example, Fisher and Sykes
1959, Fisher and Gaunt 1964, Martin et al 1967, Sykes et al 1972, Torrie and Whittington
1975, Guitmann 1978, 1984, 1987, McKenzie 1979a, b, Adler 1983). We surmise that
efficient algorithms developed in the past to exactly enumerate all the distinct configur-
ations for a given length, in general, minimized the use of computer memory (a rather
scarce commodity in the early days of the computer age) and were as a result more
cPU intensive. A typical algorithm (e.g. Grassberger 1982} to enumerate saws, also
termed chains, on the square lattice may be implemented as follows: the system is
initialized by setting each lattice site to zero and the current point to (1, 1). The next
step is recursive: check in turn each point in the four directions and if not occupied,
set to 1 and make this site the current point. Now solve for (n—1) points, We take
advantage of the point group symmetry of the lattice to minimize the generation of
saws. Thus we consider only walks whose first step is along the positive x axis (a
reduction by a factor of 4), and whose second step is either along the positive x axis
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or the positive y axis (not along the negative y axis and hence a further reduction by
a factor af about 3/2). In addition, we check to see whether a distinct walk is created
by rotation of 180° about an axis vertical through its centre. We have used these
symmetry features to reduce the number of saws we must enumerate in order to
determine the total number of saws of n steps. We refer to this algorithm as the MaF
(modified brute force). We present our algorithm in section 2 which is followed by
new results for the 2p square and honeycomb lattices, the 3D simple cubic, 4p and sp
hypercubes.

2. The algorithm

In the generation of long chains it appears that we are repeating nearly identical
subsearches of shorter segments, and with the adequate storage of the necessary
information, it may be possible to increase the speed of the algorithm and hence
enumerate longer saws. If it is possible to store data for chains of length 6, then this
together with the use of the mMBF method to generate, for example, chains of length
16, may enable us to extract information on chains of length 28 by adding segments
of length 6 to each end. Our method, which could be referred to as ‘trimerization’, is
similar in spirit to the dimerization method proposed by Torrie and Whittington (1975).
This example will be used in the remainder of this section. We actually generate and
store two independent data structures, The first list contains the (x, y) coordinates of
all points of saws of length 6, starting at the origin. The second list contains an entry
for each point within 6 units of the origin, where a point is defined as being within 6
units of the origin if the sum of the absolute values of its coordinates is less than or
equal to 6. An entry is itself a list of which of the 6-unit saws go through that point.
Having a chain with one end at the origin and knowing which points it occupies within
6 units of the origin, the second list can be used to determine how many chains of
length 6 can be tacked on to the origin. This basic idea of concatenating chains, that
is, tacking short chains on the ends of longer ones, is used to provide a faster algorithm.

With respect to our example of a 28-unit saw, we would generate all the configur-
ations of 16-unit saws and tack 6-unit chains an to each end, thereby determining the
total number of 28-unit saws. The 16-unit base saw, starting at the origin, is generated
using the MBF aigorithm, but extra information is maintained during the recursive
searching, This information is in the form of a list of the number of points of intersection
between each 6-unit saw and the current configuration of the sites within 6 units of
the origin. If the entry in this intersection list for a particular 6-unit saw is 2, then
that means that tacking the 6-unit saw on to the origin point would result in a
self-overlap of 2 points. The number of chains that can be concatenated to the base
chain (the number of 0s in this list) is updated as points are added and deleted in the
16-unit base saw, using the second data structure mentioned in the last paragraph. If
a point added to the sAw is within 6 units of the origin, then the intersection list must
be updated by incrementing by 1 all entries which correspond to 6-unit saws which
go through the new point. The entries are decremented when the point is deleted from
the base saw. At the termination of constructing each 16-unit base saw, we have a list
of 6-unit saws which can be added to the beginning without self-overlap. Now the
end of the base saw is examined in a similar manner to determine which subset of
6-unit SAws may be added to the end. Now, knowing the allowable subset to be tacked
on at the beginning and the allowable subset to be tacked on at the end, we cannot
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simply multiply the sizes of the two sets, since adding a particular saw to the beginning
may preclude adding certain ones to the end. This happens when the endpaoints of the
base saw are within 26 =12 units, which is often. Here, we have to look at each
6-unit saw at, say, the end, and check which 6-unit saws can still be added to the origin.

All saws of length 16 are generated using the standard MBF recursive algorithm,
then for each of these base saws one determines how many saws of length 28 have
this base saw as their middle 16 units. There are several symmetry relations to be
taken advantage of when building the 16-unit base saw. These include four-point
symmetry about the origin, mirror symmetry about the x axis (because the first step
is always along the x axis), and two-way reverse symmetry, which is symmetry obtained
by placing the origin of the saw at its endpoint, and the end at the origin. These
provide a speed-up of roughly 4, 2 and 2 times, respectively, which is to say that it
requires enumeration of only 1/16 of all saws of length 16, on the square lattice.

We summarize the essential features of our algorithm:

(i) Precompute an array A[{], where i ranges from 1 to the number of chains of
a fixed length, I (in our example 6), and each element of the array is a list of the (x, y)
points of a particular chain.

(ii) Precompute an array B[ p] which, for a given point, p, lists which saws of
length I go through that point, and therefore cannot be added to the origin if that
point is already occupied.

(iii) Use the basic recursive algorithm to build base saws of length b {in our case
16). Use the array B to maintain the list of which saws of length ! can be added to
the origin. For each b-unit saw generated, use the array B at the end of the b-unit
saw to create a list of which saws of length 7 can be added to the end. Use the array
A to append each saw from this list to the end, and use B to update the list of valid
saws for the origin. Sum the number that can be added to the origin after attaching
each applicable saw to the end. This sum is the number of chains of length 2« I+ b
which have the particular base saw as its middle b segments. We note that this algorithm
does not reduce the complexity of the calculation, but by calculating information about
the ends and storing it we have reduced the actual CPU time for the enumeration of
chains of a given length. Because of the concatenation process a lower bound to the
time required to enumerate chains of length n will grow exponentially as n — 25 rather
than as n for the MBF algorithm. The time required to enumerate C; on the sq lattice
on a SUN 386i workstation was approximately 43 days,

The end-to-end distance could be calculated if the array B is replaced with array
A. Thus the array A is used for adding precomputed chains to both ends of the base
chain. This would slow the algorithm but not significantly. We intend to use this
modified form of the algorithm to determine the end-to-end distance for chains in
three-dimensions.

3. Enumeration of saws

This algorithm is used to extend the enumeration C, of saws of length n on the 2D
honeycomb {Hc) lattice and on the family of cubic lattices in two, three, four and five
dimensions: namely the square (sQ), simple cubic (sc) and the loose-packed hypercubic
lattices which we denote C4 and C5. Table 1 shows the number of terms we have
generated and the longest previous enumeration in each of the cases.
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Table 1. Maximum number of steps in SAWs enumerated and comparison with previous

work.
D Lattice n Previous Reference
2 HC 42 34 +
SQ 30 27 b3
3 5C 23 20 1
4 C4 18 13 §
5 C5 13 11 LI

+ Sykes et al (1972).
1 Guttmann (1987).
§ Guttmann {1978).
f Fisher and Gaunt (1964).

The C, for these lattices are tabulated in table 2. Our results agree with previously
published results and we have added 8, 3, 3, 5 and 2 to the respective series as tabulated.
Gur new terms up to # = 28 on the sq and n = 20 for the sc were reported in STATPHYS
16 in Boston {(MacDonald et al 1986). The values agreed with Guttmann’s (1986, 1987)
calculations to order 27 on the sq and also to order n =20 on the sc which were also
reported at that conference. An additional three terms on the sc were reported at
STATPHYS 17 in Rio de Janeiro (Hunter et al 1989).

3.1. 2D sAWws

The saw generating function

fix)= g C.x"~A(1— ux)" [1+ B(1—px)*+...] (N

which implies C, ~ u"n”"' has been analysed for the HC and the sg lattices by both
the conventional methods (Hunter and Baker 1973, Gaunt and Guttmann 1974) to
detect the dominant singularity and by other methods to detect the correction-to-scaling
behaviour. For the Hc lattice we have the distinct advantage that we know p=1/x.=
V(2+V(2)) exactly {=1.847 759 065 .. .). Unbiased estimates of g and y from the roots
and residues of Padé approximants to the derivative of the logarithm of the generating
function (Dlog Padés) were well converged and agreed very well with the known u
and with Nienhuis’s (1982) prediction that y = 43/32==1.343 75. Our conclusion based
on the unbiased Dlog Padés is summarized in the first line of table 3.

Because of the period 4 oscillations in the ratios for the Hc series, we performed
a Euler transformation to move the interfering singularities further away in the complex
plane. This did little to the unbiased Padé estimates except to provide a marginal
improvement in the degree of convergence. However, after the transformation we
obtained unbiased ratio method estimates (line 2, table 3) which, although not as
accurate, are consistent with the Padé results.

Using first-order non-homogeneous integral approximants (Hunter and Baker 1979,
Fisher and Au-Yang 1979) we obtained the unbiased estimates recorded in line 3 of
table 3. These are in remarkable agreement with the exact results for o and with
Nienhuis’s y. We have used the approximants as defined by Hunter and Baker which
are similar, but not identical, to those used by Guttmann.
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Table 3. Result from standard methods of analysis for the dominant singularity only for
the D =2 HC SAW series.

Method X, w=x! ¥

Padé unbiased 0.541 191 +£0.000 010 1.847 78 £ 0.000 03 1.343 +0.002

Ratio unbiased 0.5412+0.0001 1.8477 +0.0003 1348 £0.005

Integral unbiased 0.541 1968 +0,000 0008 1.847 757 £ 0.000 003 1.3440 = 0.0003

Padé biased by x, (0.541 196 100Z . . . given} 1.3437 £ 0.0001

Ratio biased by x, (0.541 196 1002 . . . given) 1.344 +£0.001

‘Exact’ results 0.541 196 1002 . .. 1.847 759065, .. 1.343 75

Table 4. Summary of RGA analysis for cotrection terms HC SAW series.

Unbiased

Biased
Trial A Ye b Y
0.70 1.000 06 1.347 1.344
0.75 1.000 05 1.347 1.344
0.80 1.000 03 1.347 1.344
0.85 1.000 02 1.346 1344 5
0.90 1.000 015 1.346 1.3441
0.950 1.000 002 1.3443 1.344 20
0.955 1.000 002 1.3442 1344 14
0.960 1.000 002 i.344¢ 1.344 08
0.965 1.000 000 1.3439 134403
0970 1.000 000 1.3438 1.344 00
0.975 0.999 9999 1.3437 1.34393
0.980 0.999 9999 1.3437 1.343 88
0.985 0.999 997 1.3435 1.343 83
0.990 0.999 997 1.3432 1.343 78
0.995 0.999 996 1.3431 134374
1.000 0.999 995 1.3430 1.343 68
1.05 0.999 995 1.342 1.343 2
1.10 0.999 991 1.342 1.3428
i.i5 0.999 990 i.341 1.3423
1.20 0.999 985 1.339 13418
1.25 0.999 980 1.338 13412
1.30 0.99998 1.337 1.340 6
1.35 0.999 98 1.335 1.3400
1.40 099998 1.334 1.339
1.45 0.95998 1.333 1.337
1.50 0,999 98 1.330 1.335
1.55 0.999 98 1.332 1.33
1.60 0.99997 1.330 1.33

If we bias the estimates of y by specifying the exact value of u we improve our
estimates from the Padé approximants and ratio analysis by one significant figure (lines
4 and 5, tabie 3).

With this kind of precision from methods that account for the dominant singularity
only, one might predict at the outset that the correction-to-scaling effect is small.
Several attempts were made to identify the important correction terms. We were
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particularly concerned to look for the lowest-order correction term characterized by
the exponent A in equation (1) and if that turned out to be 1.0 (the analytic correction)
to see if any evidence of a non-analytic correction could be found—particularly one
close to Nienhuis’s predicted value A=1.5.

Using the transformation method of Baker and Hunter (1973) we found no evidence
of a non-analytic correction. The procedure used by Guttmann (1984) based on earlier
work due to Roskies (1981) and Adler er al (1982) (hereinafter referred to as RGA)
was quite useful but again gave no evidence of a non-analytic correction either for
A<1 or A>1. One transforms the series using the exact x. and a trial A using
y=1—(1—x/x.)* The transformed series should have a singularity at 1.000 with
exponent y/A. One can analyse the Dlog Padé approximants for this series for y and,
if desired, bias the results by insisting that the singularity be at 1.000. The results of
the analysis for several trial A are summarized in table 4. For the biased estimates, the

moset ohvious agreement with Nienhuis’s v occurs when we used A =0,995, snegesting
most ooVIOUS agreement wilh INIENNUIS's -y OCCUrs when we used .95, sugaesiing

that the first correction term is the analytic one. For the unbiased analysis the closest
agreement to y. = 1.0 and y = 1.343 75 occurs for A only slightly lower at A = 0.975—still
close enough to suggest an analytic correction. There is very little evidence at A=1.5
except perhaps a slight improvement in the degree of convergence (to a value other
than 43/32!) to suggest that Nienhuis’s non-analytic correction term is present. This
suggests to us that if such a correction term is present, its amplitude must be very
small indeed, in keeping with the observation of Ishinabe {1988).

For the Hc the ultimate comparison for series results is with Nienhuis’s prediction.
However, we may also compare our results with previous analyses of the 34-term series
by others. Adler (1983) used the exact x. to estimate y=1.344 and three correction
exponents A, =093, A,=1.2 and A,=1.5. Guttmann (1987) reanalysed the series to
obtain 0.541 1935 +£0.000 0045 and y =1.3440+0.0003, with no attempt to determine
the A. Our resuits with the ionger series improve the agreement with Nienhuis for x.
and vy but do not agree with Adler for the correction exponents.

For the sq lattice we do not know p or x, exactly. However, we have analysed the
series in exactly the same way as for the Hc series. The results obtained for the dominant
singularity using Padé (pa) and integral approximants (1A) are summarized in table 5.

We have used Nienhuis's y value to form Padés to [f (x)1"* and obtained biased
estimates for x.. However, the 1A results are the most convincing and our value of
x.=0379 0520:|:0.000 0010 agrees well with Guitmann's (1987} value x.=
0.379 0528+ 0.000 0015 from this series with three fewer terms and from the (R%,) series.
From their analysis of polygon series Guitmann and Enting (1988) have concluded

=10.379 052 28 £0.000 000 15. Guttmann's y =1.343 61 @0.000 13 is very close to our
estimate. All of this evidence seems mutually consistent and would lead us to accept
the 1A value for x. as our best estimate. The Guttmann and Enting polygon result

appears to be the most precise estimate for x. and suggests that our qualitative

Table 5. Results from standard methods of analysis for the dominant singularity only for
the D> =2 sQ SAW series.

1

X M= x: ¥
Padé unbiased 0.379 04:0.000 02 2.638 24 £0.000 14 1.340+0.005
Integral unbiased 0.379 0520 0.000 001 0 2.638 161 £0.000 007 1.343620.0002

Padé¢ biased by ¥ 0.379 06 £0.000 01 2.638 10+0.000 07 (1,343 75 given)
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confidence limits might be unnecessarily conservative when compared with their
statistically based limits.

When we analyse this series to look for the correction term using the rRGa transforma-
tion, we find some evidence of a non-analytic correction term with A~0.85 in at least
apparent conftict with our analysis of the Hc lattice. However, for the so lattice we
do not know x, exactly. We apply the transformation, this time scanning over a range
of x, and a range of trial A, looking for consistency with Nienhuis’s y and for the
degree of convergence in the estimates of y. For the Hc lattice consistency with Nienhuis
did not occur at the same A as the best overall convergence, but they did accur close
together. Since x. is now adjustable, the task is harder. Based on these two criteria
alone one would conclude that A~ 0.85. To conclude A=1.00 and y=1.34375 one
would have to increase x. to 0.379 065 which is apparently inconsistent with our 1a
estimate of x_=0.379 052.

3.2, 3D 5AWs

We have analysed our 23-term sc series by the same methods as we used for the 2p
lattices. In table 6 we show our conclusions from the analysis for the dominant
singularity The standard Padé approximant procedures——both biased and unbiased—

b £en ol mavy veamammamadacdad mmecraaae.

lCdU I.U rdUU ldUle UI. CbllllldLUb 10 Ag d.IlU 'Y Wlllb[l auu'w' li[lpleCUClllCu DUHVCIEC[ILU
to the values:

x.=0.213 4987
v=1.161932.

We present the Padé data in table 7. We show in part (b) of the table the biased
Padé estimates for y using three different values of x.: the value above from the
unbiased locations of the pole and values that differ from it by one in the sixth decimal
place. For the upper and lower values of x., the convergence is not as striking as it is
for the middle value (three fewer decimal places).

Table 6, Results from standard methods of analysis for the dominant singularity only for
the D=3 sC SAw series.

—1

X, H=X ¥

Padé unbiased 0.213 4987 £0.000 0010 4.683 869+ 0.000 022 1.161 93 £0.000 10
Integral unbiased 0.213 4965+ 0.000 0030 4,683 918 + 0.000 065 1.1613 £0.0010

Padé¢ biased by x, {0.213 4987 given) 1.161 9315+£0,000 0015

The rGa transformation analysis which we expect to locate the correction-to-scaling
exponent indicates quite strongly that the correction is analytic. We have scanned over
a grid of A values from 0.4 to 1.2 and over five values of x. from 0.213 487 to 0.213 507.
The criteria we apply in interpreting the results are consistency of the poles in the
approxlmants with Y= 1.0 exactly and the aegree of convergence in the values of both
the poles and the residues.

This time we have no semi-rigorous knowledge of y as we did in two dimensions.
We detect excellent convergence of poles and residues for x,=10.213 497 for A=1.0
and for x,=0.213 502 for A=0.9, 1.0 and 1.1. We then used x.=0.213 4987 (our best
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Table 7. (a) Unbiased estimates of x, and y for the sc lattice from roots and residues
respectively to d{log f{x)}/dx.

N/D Root Residue
7/8 0.213 4951 1.i61 604
8/8 5544 1.173 506
9/9 4974 1.161 802
8/9 4591 975
9/8 4981 872

10/9 4963 o
9/10 4987 927

10/10 4937 926

11/10 4937 929

10/11 4987 927

11/11 4987 928

(b) Biased estimates for ¥ for the sC lattice obtained by evaluating at x =x, Padé
approximants to (x,—x) d{log f(x)}/dx.

N/D x,=0.213 4977 x,=0.213 4987 x,=0.213 4997
7/8 1.161 6441 1.161 8904 1.161 9571
/8 16626 19320 20325
9/8 16541 19295 20359
8/9 16585 19302 20367
9/9 16507 19309 20308

10/9 16552 19313 20479
9/10 16654 19313 20596

10/10 05346 19302 11776

11/10 18410 19318 22806

10/11 18537 19316 22595

11/11 24551 19330 33921

estimate from the Dlog Padé analysis) and scanned over all the A values. At A=1.0
there is once again a striking convergence of the poles to y. = 0.999 9998.

The residues are well converged to y = 1.161 93, although when A = 1.0 the residues
(not the poles) are completely insensitive to the choice of x.. When we bias the
transformed function to have a pole at y.=1.0 the ¥ we get has converged to y=
1.161 930+ 0.000 002, For other values of x, and A the roots and residues of the
approximants to the transformed function are not nearly so well converged as at

=1().213 4987 and A =1.0. We illustrate this in table 8, where we present the roots

and residues for the above pair of parameters and for one other pair: x,=0.213 492
and A =05 which annears tn he tha hact chaire af v fara A af 05 We concludes that

QLU i = Wed YLV GQPPCALD LY U MW U0 VIR WY W A Al G ... LI RV NS PR L v el (W it to i

there is no evidence for a non-analytic singularity from the rRGA analysis. Combining
all the evidence and relaxing the confidence limit on y to reflect the uncertainty on x,
we would conclude from our series

x.=0.213 4987 +0.000 0010
¥ =1.161 93 +0.000 10
A =1.000.02.

Our results for y in three dimensions are consistent with, but much more precise
than, McKenzie's {1979a) analysis of the Fcc series. She found y=1.1615+0.0005
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Table 8. Padé approximants to the RGA transformed series on SC lattice for two different

choices of x, and A.

x,=0.2134920, A=0.5 x,=02134987, A=1.0

N/D Root Residue Root Residue
6/7 0.996 28510+ 00 ~0.113 6054D+ 01 0.999 85500 +00 -0.1159724D+01
17 0100 1152D+M —0,117 1213 D+01 0,990 06820+ 00 —0.1161247D 401
8/7 0.10005520+01 ~0.116 5811 D +01 09999742 D+ 00 -0.116 14360 + 01
7/8 0,100 0711D+01 —0.116 71549 D+ 01 0.999 9833 D + 00 -0.116 1605D +01
8/8 0.100 0907 D401 —0.116 9543 D+ 01 0.100 0261 D +01 -0.117 3505 D+ 01
9/8 0.100 07890401 —0.116 8265D +01 0.999 9941 D400 —-0.116 1802D + 01
&/9 0.100 0814D+01 —0.116 8558D + 01 0.100 0002 2+ 01 —0.116 19750 + 01
9/9 0.100 0966 D + 01 —0.117 0087D +01 0.999 9974 D +00 ~0.116 18720+ 01
i6/9 0.100 0467 D+ 01 —0.116 4624 D + 01 0.999 98890+ 00 ~0.116 17100+ 01
9/10 0.100 0626 D +01 -0.116 66020 +01 0.999 9998 D + 00 -0.116 1927D + 01
10/10 0.1003258D+01 —0.116 7028 D+ 01 0.999 9998 D+ 00 -0.116 1926 D+ 01
11/10 0.1000027D+0 —0.115 8571 D +01 0.999 9999 D+ 00 —0.116 19290 + 01
10/11 01000236 D+01 —0.116 18670 + 01 0.999 9998 D + 00 -0.116 1927D+01
11/11 0.1000109D+01 ~0.1159904D+ (1 0.999 9998 D + 00 -0.116 1928D+01

and consistency with the rG prediction of a correction exponent A =0.465 (LeGuillou
and Zinn-Justin 1977, Baker et al 1978). Guttmann (1987) reanalysed McKenzie's
series and obtained y=1.1629+0.0018 and for his 20-terms sc series concluded
v=1.1613x0.0021 and x.=0.213 497 + 0.000 010. Our results indicate a greater degree
of convergence to apparently more precise values for x, and ¥ which are consistent
with Guttmann.

3.3. 4D 5AWs

At D=4, the upper critical dimension, we expect mean field exponents with a
logarithmic correction factor f(x)=A{l1-x/x.)7"|In(1 -x/x)|* (Larkin and
Khmel’nitskii 1969). Table 2 shows the extended series for the number of distinct
chains for N = 18, As expected, we find for our d = 4 hypercubic series that the methods
which do not account for the logarithmic correction are extremely slow to converge
to the expected mean field values. Both direct and Dlog Padé approximants should
have poles at x., while the residues of the Dlog Padés are unbiased estimates of y.
For our series we found slowly increasing poles in the direct Padé approximants which
had reached x = 0.147 39. For the Dlog Padés, however, the poles were slowly decreasing
and had reached x =0.147 68. We would regard these as bounds on x.. The residues
of the Diog Padés had decreased to about 1.065—stiii a iong way from i.0. Euier
transformations did little to improve these estimates. Using first-order non-
homogeneous 1as we see poles and residues near (.147 66 and 1.060 respectively.
Confidence limits are very difficult to estimate because of the slow convergence.

To account for the logarithmic factor we transform the series by dividing out

{x—x¥)7", raise the series to the power 1/ 8§, differentiate to make the log a simple pole
wmeAd than nwahnn Airant Padic and lanl Fnr (\nﬂclcfpn!\\f with the initial Y* .'—I" an a
uuu WD W YALLULY Wllvwl 1 GWLw3 Aallsd l\lvl\ WASLLOASEW AW Y  FYALLE LAAW Lilinilas e

range of trial x¥* and 8. We find the best convergence and self-consistency at x. = 0,147 60
and & = 0.25 but § = 0.27 was almost as good. (The results were not particularly sensitive
to 8.) Thus our results are entirely consistent with the expected logarithmic behaviour
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if we use x.=0.147 60. This value for x. is between the values we obtained for direct
and Dlog Padés and we assume they are each converging slowly to this value from
either side. Hence we would conclude that

x.=0.147 60+ 0.000 10
5 =0.25+0.02,

Guttmann {1978) found & = (.23 + 0,04 for this lattice and McKenzie (1979b) on
the hyper-face-centred cubic lattice found 8 =0.24 +0.03.

3.4 spsaws

At D=5 we expect pure mean-field behaviour. With our 13-terms series we observe
slow convergence which has reached the following:

Direct Padés: x,=0.113 05

Dlog Padés: x.=0113 17
y=1.025

Integral approximants: x.= 01132
¥ =1.025.

However, if we use direct Padé approximants, multiply by x—x} and test for the
degree of convergence to an amplitude we find the best convergence when x¥ = 0.113 03.
On the other hand, if we take Dlog Padés, multiply by x — x}* and test for convergence
to y =1.00 we find the best results for x* =0.113 07. Hence we conclude that the D=3
series analysis is consistent with the expected mean field behaviour and that

x.=0.113 05 0.000 05.

We plan to extend this series even further aud to investigate the correction-to-scaling
behaviour (Guttmann 1981).

4. Conclusion

We have used an efficient method for enumerating chains on various lattices. The
method is dependent on the storage of information which has to be recalculated many
times during the generation of long chains. This technique may be extended to the
enumeration of all graphs, but this task is at best non-trivial. We have with modest
computing power (VAX 11/780 and SUN 386i) extended the existing series in two to
five dimensions. It would be possible to extend the D =3 and the D =2 sq results by
an additional one or two terms and the D =2 HC saws by at least eight terms. This
may be done by subdividing the enumeration into disjoint subsets. We are in the
process of doing this.

‘We have confirmed Nienhius’s predictions in two dimensions for the saw exponents
and critical fugacity of the Hc lattice, but apart from the analytic term have found no
evidence for the presence of a correction-to-scaling term of 1.5 with the extended
series. This is disconcerting but may reflect the fact that the amplitude of this correction
term is extremely small. The indication of a possible non-analytic A <1.0 for the sg
lattice is perplexing. We will investigate this further when we have extended the series
on both D =2 lattices and we will also iook for other appropriate methods of analysis
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for the correction terms. The D) =3 analysis has shown a striking degree of convergence.
That consistency and the lack of any evidence for a non-analytic correction again lead
us to conclude that the amplitude for such correction terms is very small or perhaps
even zero. We also confirm the presence of the logarithmic correction with mean-field
exponents in four-dimensions and thus are in agreement with the predictions and
general facets of the renormalization group. In five dimensions, although the series is
still short, we observe the expected classical behaviour. The renormalization scenario
with the concept of an upper critical dimensionality is strongly supported by our results.
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Note added in proof. We have since extended the HC to 50 terms, the 5Q to 32 terms, SC to 24, and the 4D
hypercubic to 21 terms. A recent preprint from Boston University has extended the s to 34 terms and is
in agreement with our values.
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