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Canada B2G IC0 

Received 29 July 1991 

Abstract. T h e  method of concatenation (the addition of precomputed shorter chains to 
the ends of a centrally generated longer chain) has permitted the extension of the exact 
series for C,-the number of distinct configurations for self-avoiding walks of length N. 
We report on the leading exponent y and x, (the reciprocal of the connectivity constant) 
for the 2~ Honeycomb lattice (42 terms) 1.3437,0.541 1968; the 20 square lattice (30 terms) 
1.3436, 0.3790520; the 3D simple cubic lattice (23 terms) 1.161932, 0.2134987: the +D 
hypercubic (18 terms) y =  I ,  0.147 60 and the JD hypercubic lattice (13  terms) y e  1.025, 
0.11305. In addition we have also evaluated the leading correction terms: honeycomb 
A =  I .  square A=0.85, simple cubic A =  1.0 and the 4~ hypercubic logarithmic correction 
with S=O.25. 

1. Introduction 

The random walker and its vibrant offspring, the self-avoiding walker, are topics that 
have received continued attention since the earliest definition of the problem at the 
turn of the century (Barber and Ninham 1970, Montroll and Schlesinger 1984). The 
SAW (i.e. the subset of random walks that accidentally avoids self-intersection) has 
been used to model physical systems from the microscopic scale (polymers, etc) to the 
macroscopic (clustering of proto-galaxies in the early universe). The SAW can also be 
defined by the n-vector model in the limit of n + 0 (deGennes 1979), and this may be 
considered as one of the simplest contenders for testing the predictions of the renor- 
malization group theory. The SAW is also the simplest non-trivial graph determined by 
exact enumeration which is used in series analysis (see, for example, Fisher and Sykes 
1959, Fisher and Gaunt 1964, Martin era/ 1967, Sykes eta /  1972, Torrie and Whittington 
1975, Guttmann 1978, 1984, 1987, McKenzie 1979a, b, Adler 1983). We surmise that 
efficient algorithms developed in the past to exactly enumerate all the distinct configur- 
ations for a given length, in general, minimized the use of computer memory (a rather 
scarce commodity in the early days of the computer age) and were as a result more 
CPU intensive. A typical algorithm (e.g. Grassberger 1982) to enumerate SAW$, also 
termed chains, on the square lattice may be implemented as follows: the system is 
initialized by setting each lattice site to zero and the current point to (1, 1). The next 
step is recursive: check in turn each point in the four directions and if not occupied, 
set to 1 and make this site the current point. Now solve for (n - 1) points. We take 
advantage of the point group symmetry of the lattice to minimize the generation of 
 SAW^. Thus we consider only walks whose first step is along the positive x axis (a 
reduction by a factor of 4). and whose second step is either along the positive x axis 
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or the positive y axis (not along the negative y axis and hence a further reduction by 
a factor of about 3/2). In addition, we check to see whether a distinct walk is created 
by rotation of 180” about an axis vertical through its centre. We have used these 
symmetry features to reduce the number of SAWS we must enumerate in order to 
determine the total number of SAWS of n steps. We refer to this algorithm as the MBF 
(modified brute force). We present our algorithm in section 2 which is followed by 
new results for the ZD square and honeycomb lattices, the 3~ simple cubic, 4~ and SO 
hypercubes. 

2. The algorithm 

In the generation of long chains it appears that we are repeating nearly identical 
subsearches of shorter segments, and with the adequate storage of the necessary 
information, it may be possible to increase the speed of the algorithm and hence 
enumerate longer SAWS. If it is possible to store data for chains of length 6, then this 
together with the use of the MBF method to generate, for example, chains of length 
16, may enable us to extract information on chains of length 28 by adding segments 
of length 6 to each end. Our method, which could be referred to as ‘trimerization’, is 
similar in spirit to the dimerization method proposed by Torrie and Whittington (1975). 
This example will be used in the remainder of this section. We actually generate and 
store two independent data structures. The first list contains the ( x , y )  coordinates of 
all points of SAWS of length 6, starting at the origin. The second list contains an entry 
for each point within 6 units of the origin, where a point is defined as being within 6 
units of the origin if the sum of the absolute values of its coordinates is less than or 
equal to 6. An entry is itself a list of which of the 6-unit SAWS go through that point. 
Having a chain with one end at the origin and knowing which points it occupies within 
6 units of the origin, the second list can be used to determine how many chains of 
length 6 can be tacked on to the origin. This basic idea of concatenating chains, that 
is, tacking short chains on the ends of longer ones, is used to provide a faster algorithm. 

With respect to our example of a 28-unit SAW, we would generate all the configur- 
ations of 16-unit SAW% and tack 6-unit chains on to each end, thereby determining the 
total number of 28-unit  SAW^. The 16-unit base SAW, starting at the origin, is generated 
using the MBF algorithm, but extra information is maintained during the recursive 
searching. This information is in the form of a list of the number of points of intersection 
between each 6-unit SAW and the current configuration of the sites within 6 units of 
the origin. If the entry in this intersection list for a particular 6-unit SAW is 2, then 
that means that tacking the 6-unit SAW on to the origin point would result in a 
self-overlap of 2 points. The number of chains that can be concatenated to the base 
chain (the number of Os in this list) is updated as points are added and deleted in the 
16-unit base SAW, using the second data structure mentioned in the last paragraph. If 
a point added to the SAW is within 6 units of the origin, then the intersection list must 
be updated by incrementing by 1 all entries which correspond to 6-unit SAWS which 
go through the new point. The entries are decremented when the point is deleted from 
the base SAW. At the termination of constructing each 16-unit base SAW, we have a list 
of 6-unit  SAW^ which can be added to the beginning without self-overlap. Now the 
end of the base SAW is examined in a similar manner to determine which subset of 
6-unit SAWS may be added to the end, NOW, knowing the allowable subset to be tacked 
on at the beginning and the allowable subset to be tacked on at the end, we cannot 
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simply multiply the sizes of the two sets, since adding a particular SAW to the beginning 
may preclude adding certain ones to the end. This happens when the endpoints of the 
base SAW are within 2*6= 12 units, which is often. Here, we have to look at each 
6-unit SAW at, say, the end, and check which 6-unit  SAW^ can still be added to the origin. 

All SAWS of length 16 are generated using the standard MBF recursive algorithm, 
then for each of these base SAW. one determines how many SAW$ of length 28 have 
this base SAW as their middle 16 units. There are several symmetry relations to be 
taken advantage of when building the 16-unit base SAW. These include four-point 
symmetry about the origin, mirror symmetry about the x axis (because the first step 
is always along the x axis), and two-way reverse symmetry, which is symmetry obtained 
by placing the origin of the SAW at its endpoint, and the end at the origin. These 
provide a speed-up of roughly 4, 2 and 2 times, respectively, which is to say that it 
requires enumeration of only 1/16 of all  SAW^ of length 16, on the square lattice. 
Simi!zr economics CP!! he rea!ized e!! ether !n*tice.. 

We summarize the essential features of our algorithm: 
(i) Precompute an array A[ i ] ,  where i ranges from 1 to the number of chains of 

a fixed length, I (in our example 6), and each element of the array is a list of the (x. y )  
points of a particular chain. 

(ii) Precompute an array B [ p ]  which, for a given point, p,  lists which SAWS of 
length I go through that point, and therefore cannot be added to the origin if that 
point is already occupied. 

(iii) Use the basic recursive algorithm to build base  SAW^ of length b (in our case 
16). Use the array B to maintain the list of which  SAW^ of length I can be added to 
the origin. For each b-unit SAW generated, use the array B at the end of the b-unit 
SAW to create a list of which SAWS of length I can be added to the end. Use the array 
A to append each SAW from this list to the end, and use B to update the list of valid 
SAWS for the origin. Sum the number that can be added to the origin after attaching 
each applicable SAW to the end. This sum is the number of chains of length 2 * I+ b 
which have the particular base SAW as its middle b segments. We note that this algorithm 
does not reduce the complexity of the calculation, but by calculating information about 
the ends and storing it we have reduced the actual CPU time for the enumeration of 
chains of a given length. Because of the concatenation process a lower bound to the 

than as n for the MBF algorithm. The time required to enumerate C,, on the SQ lattice 
on a SUN 386i workstation was approximately 4l d ays. 

The end-to-end distance could be calculated if the array B is replaced with array 
A. Thus the array A is used for adding precomputed chains to both ends of the base 
chain. This would slow the algorithm but not significantly. We intend to use this 
modified form of the algorithm to determine the end-to-end distance for chains in 
three-dimensions. 

time required !O enumerate chains of!ength n wi!! grow e*po"en!ia!!y as '? - 2 b  r.!hcr 

3. Enumeration of SAWS 

This algorithm is used to extend the enumeration C. of SAWS of length n on the 2D 
honeycomb (HC) lattice and on the family of cubic lattices in two, three, four and five 
dimensions: namely the square (sQ), simple cubic (sc) and the loose-packed hypercubic 
lattices which we denote C4  and C5. Table 1 shows the number of terms we have 
generated and the longest previous enumeration in each of the cases. 
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Table 1. Maximum number of steps in SAWS enumerated and comparison with previous 
work. 

D Lattice n Previous Reference 

2 HC 42 34 t 
SQ 30 27 % 

3 sc 23 20 % 
4 c 4  18 13 I 
5 c 5  13 I 1  n 

t Sykes er a1 (1972). 
$ Guttmann (1987). 
I Guttmann (1978). 
ll Fisher and Gaunt (1964). 

C, for these lattices are tabulated in table 2. Our results agree with previa ly 
d results and we have added 8,3,3,5 and 2 to the respective series as tabulated. 

Our new terms up to n = 28 on the SQ and R = 20 for the sc were reported in STATPHYS 
16 in Boston (MacDonald et 01 1986). The values agreed with Guttmann's (1986,1987) 
calculations to order 27 on the SQ and also to order n = 20 on the sc which were also 
reported at that conference. An additional three terms on the sc were reported at 
STATPHYS 17 in Rio de Janeiro (Hunter et a1 1989). 

3.1. ZD  SAW^ 

The SAW generating function 

f (x)  = C.X" - A(1- px)^'[l+ B(1- +)A+. . .] ( 1 )  
n =o 

which implies C. - wnn'-' has been analysed for the HC and the SQ lattices by both 
the conventional methods (Hunter and Baker 1973, Gaunt and Guttmann 1974) to 
detect the dominant singularity and by other methods to detect the correction-to-scaling 
behaviour. For the HC lattice we have the distinct advantage that we know p = l/x,= 
J(2+Jo exactly (=1.847 759 0 6 5 , .  .). Unbiased estimates of p and y from the roots 
and residues of Pad6 approximants to the derivative of the logarithm of the generating 
function (Dlog PadCs) were well converged and agreed very well with the known 
and with Nienhuis's (1982) prediction that y = 43/32 = 1.343 75. Our conclusion based 
on the unbiased Dlog Padis is summarized in the first line of table 3. 

Because of the period 4 oscillations in the ratios for the HC series, we performed 
a Euler transformation to move the interfering singularities further away in the complex 
plane. This did little to the unbiased Pad6 estimates except to provide a marginal 
improvement in the degree of convergence. However, after the transformation we 
obtained unbiased ratio method estimates (line 2, table 3) which, although not as 
accurate, are consistent with the Pad6 results. 

Using first-order non-homogeneous integral approximants (Hunter and Baker 1979, 
Fisher and Au-Yang 1979) we obtained the unbiased estimates recorded in line 3 of 
table 3. These are in remarkable agreement with the exact results for p and with 
Nienhuis's y. We have used the approximants as defined by Hunter and Baker which 
are similar, but not identical, to those used by Guttmann. 
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Table 3. Result from standard methods of analysis for the dominant singularity only far 
the D = 2 HC SAW series. 

-1  
Method & f i = x s  Y 

Pad6 unbiased 0.541 191+0.000010 1.847 78f0.00003 1.343+0.002 
Ratio unbiased 0.5412 * 0.0001 1.8477f0.0003 1.348i0.005 
Integral unbiased 0.541 1968+0.0000008 1.847 757+0.000003 

Ratio biased by xs (0.541 196 1002,. .given) 1.344+0.W1 
'Exact' results 0.541 196 1002.. . 1.847 759065,. . 1.343 75 

1.3440f 0.0003 
Faad6 biased by x. (0.541 196 1002.. . givenj i.jm + 0.000i 

Table 4. Summary of RGA analysis for correction terms HC SAW series 

Unbiased 
Biased 

Trial A yC Y Y 

0.70 1.o0006 1.347 1.344 
0.75 1.000 05 1.347 1.344 
0.80 1.000 03 1.347 1.344 
0.85 1.000 02 1.346 1.344 5 
0.90 1.000015 1.346 1.344 1 
0.950 1.000 002 1.3443 1.344 20 
0.955 1.000 002 1.3442 1.344 14 
0.960 1.000 002 1.3440 1.344 08 
0.965 1.oooM)o 1.3439 1.34403 
0.970 1.000 000 1.3438 1.34400 
0.975 0.999 9999 1.3437 1.343 93 
0.980 0.999 9999 1.3437 1.343 88 
0.985 0.999997 1.3435 1.343 83 
0.990 0.999 997 1.3432 1.343 78 
0.995 0.999 996 1.3431 1.343 14 
1.000 0.999 995 1.3430 1.343 68 
1.05 0.999 995 1.342 1.343 2 
1.10 0.999 991 1.342 1.342 8 

0.944 990 i.341 ,.,*', 
1.20 0.999 985 1.339 1.341 8 
1.25 0.999 980 1.338 1.341 2 
1.30 0.999 98 1.337 1.340 6 
1.35 0.999 98 1.335 1.340 0 
1.40 0.999 98 1.334 1.339 
1.45 0.99998 1.333 1.337 
1.50 0.999 98 1.330 1.335 
1.55 0.999 98 1.332 1.33 
1.60 0.999 97 1.330 1.33 

. .."~ . ._ 
I . , ,  

If we bias the estimates of y by specifying the exact value of p we improve our 
estimates from the Pad6 approximants and ratio analysis by one significant figure (lines 
4 and 5 ,  tabie 3 j. 

With this kind of precision from methods that account for the dominant singularity 
only, one might predict at the outset that the correction-to-scaling effect is small. 
Several attempts were made to identify the important correction terms. We were 
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particularly concerned to look for the lowest-order correction term characterized by 
the exponent A in equation (1) and if that turned out to be 1.0 (the analytic correction) 
to see if any evidence of a non-analytic correction could be found-particularly one 
close to Nienhuis’s predicted value A = 1.5. 

Using the transformation method of Baker and Hunter (1973) we found no evidence 
of a non-analytic correction. The procedure used by Guttmann (1984) based on earlier 
work due to Roskies (1981) and Adler et al (1982) (hereinafter referred to as RGA) 

was quite usehi  but again gave no evidence of a non-anaiytic correction either for 
A < 1 or A > 1. One transforms the series using the exact x, and a trial A using 
y = 1 - (1  - x/x,)”. The transformed series should have a singularity at 1.000 with 
exponent y/A. One can analyse the Dlog Pad6 approximants for this series for y and, 
if desired, bias the results by insisting that the singularity be at 1.000. The results of 
the analysis for several trial A are summarized in table 4. For the biased estimates, the 

that the first correction term is the analytic one. For the unbiased analysis the closest 
agreement toy .  = 1.0 and y = 1.343 75 occurs for A only slightly lower at A = 0.975-still 
close enough to suggest an analytic correction. There is very little evidence at A = 1.5 
except perhaps a slight improvement in the degree of convergence (to a value other 
than 43/32!) to suggest that Nienhuis’s non-analytic correction term is present. This 
suggests to us that if such a correction term is present, its amplitude must be very 
small indeed, in keeping with the observation of Ishinabe (1988). 

For the HC the ultimate comparison for series results is with Nienhuis’s prediction. 
However, we may also compare our results with previous analyses of the 34-term series 
by others. Adler (1983) used the exact x, to estimate y =  1.344 and three correction 
exponents A, = 0.93, A, = 1.2 and A, = 1.5. Guttmann (1987) reanalysed the series to 
obtain 0.541 1935*0.0000045 and y =  1.3440*0.0003, with no attempt to determine 
ihe n. Our resuits with the ionger series improve the agreement with iuienhuis ior x, 
and y but do not agree with Adler for the correction exponents. 

For the SQ lattice we do not know p or x, exactly. However, we have analysed the 
series in exactly the same way as for the HC series. The results obtained for the dominant 
singularity using Pad& (PA) and integral approximants (IA) are summarized in table 5. 
We have used Nienhuis’s y value to form Padis to [ f ( x ) ] ” ’  and obtained biased 
eotimites for .x. Howcver, the 1.4 IPSE!?~ are the moo? cnnvincing and OEI va!ue nf 
x,= 0.379 0520f0.000 0010 agrees well with Guttmann’s (1987) value x, = 
0.379 0528f 0.000 0015 from this series with three fewer terms and from the ( R > )  series. 
From their analysis of polygon series Guttmann and Enting (1988) have concluded 
xc = 0.379 052 28 f 0.000 000 15. Guttmann’s y = 1.343 61 0.000 13 is very close to our 
estimate. All of this evidence seems mutually consistent and would lead us to accept 
the IA value for x, as our best estimate. The Guttmann and Enting polygon result 
appears to be the most precise estimate for x, and suggests that our qualitative 

Table 5. Results from standard methods of analysis far the dominant singularity only for 
the D = 2 SQ SAW series. 

mest &..inus Pgreerr?er?t .&h Nler?hcis’. 0cc”rs .vher? we ..sed = 9,995, scgg&ing 

X. !.I = x;‘ Y 

Pad6 unbiased 0.37904i0.00002 2.638 24+0.000 14 1.340+ 0.005 
Integral unbiased 0.379 0520+0.000 001 0 2.638 161+0.000007 1.3436+0.0002 
Pad6 biased by y 0.37906i0.00001 2.638 10*0.00007 (1.343 15 given) 
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confidence limits might be unnecessarily conservative when compared with their 
statistically based limits. 

When we analyse.this series to look for the correction term using the RGA transforma- 
tion, we find some evidence of a non-analytic correction term with A-0.85 in at least 
apparent conflict with our analysis of the HC lattice. However, for the SQ lattice we 
do not know x, exactly. We apply the transformation, this time scanning over a range 
of x, and a range of trial A, looking for consistency with Nienhuis's y and for the 
degree of convergence in the estimates of y .  For the HC lattice consistency with Nienhuis 
did not occur at the same A as the best overall convergence, but they did occur close 
together. Since x. is now adjustable, the task is harder. Based on these two criteria 
alone one would conclude that A-0.85. To conclude A =  1.00 and y =  1.343 75 one 
would have to increase x, to 0.379 065 which is apparently inconsistent with our IA 

estimate of x. = 0.379 052. 

3.2. 3D SAWS 

We have analysed our 23-term sc series by the same methods as we used for the ZD 
lattices. In table 6 we show our conclusions from the analysis for the dominant 
singularity. The standard Pad6 approximant procedures-both biased and unbiased- 
ICdU ,U Taut. LdVICS U, Cb,Ll,l?lLr;S LUI Lc anu 7 WllLCLl > I IUW UIrpLC'CUG'LLCU c"II"cLgcLICL: 

to the values: 

.--A.. " - . I L L . L , - -  .'.--.:-.A--c --, ..... L : ^ L ^ L  -I ̂ ^.^ _I 

x,=O.213 4987 

y =  1.161 932. 

We present the Pad6 data in table 7. We show in part ( b )  of the table the biased 
Pad6 estimates for y using three different values of x,: the value above from the 
unbiased locations of the pole and values that differ from it by one in the sixth decimal 
place. For the upper and lower values of x,, the convergence is not as striking as it is 
for the middle value (three fewer decimal places). 

Table 6. Results from standard methods of analysis for the dominant singularity only for 
the D = 3 sc SAW series. 

x< IL = x,' Y 

Pad6 unbiased 0.213 4987*0.0000010 4.683 869+0.000022 1.16193+0.000 IO 
Integral unbiased 0 .2134965~0.0000030 4.683 918+0.000065 1.1613 +0.0010 
Pad6 biased bv x. (0.213 4987 eivenl 1.161 9315 *O.OOO 0015 

The RGA transformation analysis which we expect to locate the correction-to-scaling 
exponent indicates quite strongly that the correction is analytic. We have scanned over 
a grid of A values from 0.4 to 1.2 and over five values of x, from 0.213 487 to 0.213 507. 
The criteria we apply in interpreting the results are consistency of the poles in the 
approximanis with y ,  = i.6 exaciiy and the degree of convergence iii ihe values of boih 
the poles and the residues. 

This time we have no semi-rigorous knowledge of y as we did in two dimensions. 
We detect excellent convergence of poles and residues for x,=O.213 497 for A=1.0 
and for x,=O.213 502 for A=O.9, 1.0 and 1.1. We then used x,=O.213 4987 (our best 



Self-avoiding walks in two io Jive dimensions 1437 

Table 7. ( 0 )  Unbiased estimates of x. and y for the sc lattice from roots and residues 
respectively to d(log f (x)]/dx. 

~~ 

N / D  Root Residue 

718 
818 
919 

918 
1019 
9/10 

lOjl0 
11/10 
10/11 
11/11 

819 

0.2134951 
5544 
4974 
4991 
4981 
4963 
4987 
4987 
4987 
4981 
4987 

1.161 604 
1.173 506 
1.161 802 

975 
872 
710 
927 
926 
929 
927 
928 

( b )  Biased estimates for y for the sc lattice obtained by evaluating at x=x.  Pad6 
approximants to (x.-x) d(log /(x))/dx. 

NID xc=0.213 4977 xc=0.213 4987 xc=0.213 4997 

718 
818 
918 
819 
919 

1019 
9/10 

10/10 
11/10 
10/11 
11/11 - 

1.161 6441 
I 6626 
16541 
16585 
16507 
16552 
16654 
0 5346 
18410 
18537 
24551 

1.161 8904 
! ???e 
I9295 
I9302 
I9309 
I9313 
I9313 
19302 
I9318 
I9316 
I9330 

1.161 9571 
2 0325 
2 0359 
2 0367 
2 0308 
2 0479 
2 0596 
11776 
2 2806 
2 2595 
3 3921 

estimate from the Dlog Pad6 analysis) and scanned over all the A values. At A = 1.0 
there is once again a striking convergence of the poles to yc  = 0.999 9998. 

The residues are well converged to y = 1.161 93, although when A = 1.0 the residues 
(not the poles) are completely insensitive to the choice of xc. Wlen we bias the 
transformed function to have a pole at y ,=  1.0 the y we get has converged to y =  
1.161930*0.000002. For other values of x, and A the roots and residues of the 
approximants to the transformed function are not nearly so well converged as at 
xc = 0.213 4987 and A = 1.0. We illustrate this in table 8, where we present the roots 
and residues for the above pair of parameters and for one other pair: x,=O.213492 

there is no evidence for a non-analytic singularity from the RGA analysis. Combining 
all the evidence and relaxing the confidence limit on y to reflect the uncertainty on x, 
we would conclude from our series 

nnrl A -n  < xwh:,-h nnnnnra tn h e  the  her+ rhnire nf v fnr n A nf n < W e  mnrliirla +hot -.." I -".> ",l.v.l. yyy.,y'" ...- ".,". ., ..-. "., ". .. I ". I._. 1.1 _"..I. I-_ L.LY. 

x,= 0.213 4987*0.000 0010 
y =  1.161 93*0.000 10 

A = l.OO* 0.02. 
Our results for y in three dimensions are consistent with, but much more precise 

than, McKenzie's (1979a) analysis of the FCC series. She found y =  1.1615*0.0005 
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Table 8. Pad6 approximants to the RGA transformed series on sc lattice far two different 
choices of xa and A .  

& =  0.213 4920, A = O S  x,=0.2134987, A = I . O  

N / D  Root Residue Root Residue 

6/7 0.996 2851 D + 00 -0.1 13 6054D+01 0.999 8550D+00 -0.115 9724D+01 
?/7 C!.!Oe !!52D+O! -0.117 !8!31"+0! 0.990 ?6??D+OC -e.! I6 !247!? +GI 
8/7 0.1000552D+01 -O.I165811D+01 0.999 9742D+OO -0.1 16 1436D+Ol 
718 0.100 071 I D  + 01 -0.1 I6 75490 + 01 0.99998330+00 -0.116 I605D+Ol 
8/8 0.1000907D+OI -0.1 I6 9543D+OI 0.1000261D+01 -0.1173505D+01 
9/8 0.100 0?89D+OI -0.116 8265D+OI 0.999 9941D +00 -0.1 16 1802D + 01 
a/9 0.!000814D+01 -O.l168558D+OI 0.1000002D+01 -0.116 1975D+OI 
919 0.100 09660 +01 -0.1 I7 0087D +01 0.9999974DfOO -0.116 l872D+01 

l0/9 0.100 0467D+ 01 -0.1 I6 4624D +01 0.99998890+00 -O.l16l7lOD+O1 
9/10 0.1000626D+0! -0.1166602D+01 0.999 9998D+00 -0.116 1927D+01 

10/10 0.100 3258D+OI -0.116 7028D+OI 0.999 9998D+OO -0.1 I6 1926D+OI 
11/10 0.1000027D+01 -0.115 8571Di01 0.99999990+00 -0.116 l929D+01 
I O / I l  0.100 02360 +01 -0.1 I6 18670 + 01 0.99999980+00 -0.116 1927D+01 
11/11 0.1000109D+01 -0.115 9904D+01 0.9999998D+00 -0.116 1928D+01 

and consistency with the RG prediction ai a correction exponent h = 0.465 (LeCuiiiou 
and Zinn-Justin 1977, Baker ef a/ 1978). Guttmann (1987) reanalysed McKenzie's 
series and obtained y=1.1629*Oo.0018 and for his 20-terms sc series concluded 
y = 1.1613 *0.0021 and xc= 0.213 497i0.000 010. Our results indicate a greater degree 
of convergence to apparently more precise values for x, and y which are consistent 
with Guttmann. 

3.3. 4D SAWS 

At D = 4 ,  the upper critical dimension, we expect mean field exponents with a 
logarithmic correction factor f ( x ) - A ( l  -x/xJ1\  In(1 -x/x,)~' (Larkin and 
Khmel'nitskii 1969). Table 2 shows the extended series for the number of distinct 
chains for N S 18. As expected, we find for our d = 4 hypercubic series that the methods 
which do not account for the logarithmic correction are extremely slow to converge 
to the expected mean field values. Both direct and Dlog Pad6 approximants should 
have poles at x,, while the residues of the Dlog Pad& are unbiased estimates of y. 
For our series we found slowly increasing poles in the direct Pad6 approximants which 
had reached x = 0.147 39. For the Dlog Pad&, however, the poles were slowly decreasing 
and had reached x = 0.147 68. We would regard these as bounds on x.. The residues 
o i  the ijiog Padis had decreased to about i.065-stiii a iong way From i.0. Euier 
transformations did little to  improve these estimates. Using first-order non- 
homogeneous IAE we see poles and residues near 0.14766 and 1.060 respectively. 
Confidence limits are very difficult to estimate because of the slow convergence. 

To account for the logarithmic factor we transform the series by dividing out 
(x - xT)-', raise the series to the power 1/S, differentiate to make the log a simple pole 

range oftrial xr and 6. We find the best convergence and self-consistency at x,= 0.147 60 
and S = 0.25 but S = 0.27 was almost as good. (The results were not particularly sensitive 
to 8.) Thus our results are entirely consistent with the expected logarithmic behaviour 

;tld :hen eua!.;:e direct Pad& ax!  !eo!: fer cc"sis!ency With the izitiz! x: z!! fer z 
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if we use x,=O.147 60. This value for x, is between the values we obtained for direct 
and Dlog Pad& and we assume they are each converging slowly to this value from 
either side. Hence we would conclude that 

x,= 0.147 60*0.000 10 

S = 0.25 * 0.02. 

Guttmann (1978) found S = 0.23 * 0.04 for this lattice and McKenzie (1979b) on 
the hyper-face-centred cubic lattice found 6 = 0.24* 0.03. 

3.4. 5D SA WE 

At D = 5 we expect pure mean-field behaviour. With our 13-terms series we observe 
slow convergence which has reached the following: 

Direct Pad&: 

Dlog Padts: 

xc= 0.113 05 

x,=0.113 17 

y = 1.025 

Integral approximants: x,=0.1132 

y=1.025. 

However, if we use direct Pad6 approximants, multiply by x-xf and test for the 
degree of convergence to an amplitude we find the best convergence when x: = 0.1 13 03. 
On the other hand, if we take Dlog Padts, multiply by x - x: and test for convergence 
to y = 1.00 we find the best results for x: = 0.1 13 07. Hence we conclude that the D = 5 
series analysis is consistent with the expected mean field behaviour and that 

x,=0.113 05*0.00005. 

We plan to extend this series even further and to investigate the correction-to-scaling 
behaviour (Guttmann 1981). 

4. Conclusion 

We have used an efficient method for enumerating chains on various lattices. The 
method is dependent on the storage of information which bas to be recalculated many 
times during the generation of long chains. This technique may be extended to the 
enumeration of all graphs, but this task is at best non-trivial. We have with modest 
computing power (VAX 11/780 and SUN 386i) extended the existing series in two to 
five dimensions. It would be possible to extend the D = 3 and the D = 2 SQ results by 
an additional one or two terms and the D = 2 HC SAWS by at least eight terms. This 
may be done by subdividing the enumeration into disjoint subsets. We are in the 
process of doing this. 

We have confirmed Nienhius’s predictions in two dimensions for the SAW exponents 
and critical fugacity of the HC lattice, but apart from the analytic term have found no 
evidence for the presence of a correction-to-scaling term of 1.5 with the extended 
series. This is disconcerting but may reflect the fact that the amplitude of this correction 
term is extremely small. The indication of a possible non-analytic h<1.0 for the SQ 

lattice is perplexing. We will investigate this further when we have extended the series 
on both D = 2 lattices and we will also look for other appropriate methods of analysis 
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for the correction terms. The D = 3 analysis has shown a striking degree of convergence. 
That consistency and the lack of any evidence for a non-analytic correction again lead 
us to conclude that the amplitude for such correction terms is very small or perhaps 
even zero. We also confirm the presence of the logarithmic correction with mean-field 
exponents in four-dimensions and thus are in agreement with the predictions and 
general facets of the renormalization group. In five dimensions, although the series is 
still short, we observe the expected classical behaviour. The renormalization scenario 
with the concept of an upper critical dimensionality is strongly supported by our results. 
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Note added in proox We have since extended the HC to 50 terms, the SQ to 32 terms, sc to 24, and the &D 

hypercubic to 21 terms. A recent preprint from Boston University has extended the SQ to 34 terms and i s  
in agreement with our values. 
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